	EIGHTH GRADE
Mathematics Standards for the Archdiocese of Detroit	

	the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distancetime equation to determine which of two moving objects has greater speed.
8.EE.B. 6	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $\mathrm{y}=\mathrm{mx}$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.
Analyze and solve linear equations and pairs of simultaneous linear equations.	
8.EE.C. 7	Solve linear equations in one variable.
8.EE.C.7a	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).
8.EE.C.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and combining like terms.
8.EE.C. 8	Analyze and solve pairs of simultaneous linear equations (systems of equations).
8.EE.C.8a	Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
8.EE.C.8b	Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .
8.EE.C.8c	Solve simultaneous linear equations in two variables by graphing, by substitution, and by linear combination; estimate solutions using graphs; include examples with no solutions and infinitely many solutions.
8.EE.C.8d	Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
8.EE.C. 9	Analyze and solve pairs of simultaneous linear inequalities.
8.EE.C.9a	Solve linear inequalities in one and two variables, and graph the solution sets.
8.EE.C.9b	Set up and solve applied problems involving simultaneous linear equations and linear inequalities.
Functions	
Define, evaluate, and compare functions.	
8.F.A. 1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. For example, Use the vertical line test.
8.F.A. 2	Compare properties of two functions each represented in a different way

	(algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
8.F.A. 3	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.
Use functions to model relationships between quantities	
8.F.B. 4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
8.F.B. 5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
Recognize, Represent, and Apply Common Formulas	
8.F.C. 6	Recognize and preform operations with polynomials. Understand FOIL method.
8.F.C.6a	Factor simple quadratic expressions with integer coefficients, Ex. $x^{2}+6 x+$ $9, x^{2}+2 x-3$, and $x^{2}-4$; solve simple quadratic equations Ex. $x^{2}=16$ or x^{2} $=5$ (by taking square roots); $\mathrm{x}^{2}-\mathrm{x}-6=0, \mathrm{x}^{2}-2 \mathrm{x}=15$ (by factoring); verify solutions by evaluation.
8.F.C.6b	Recognize and apply the common formulas: $\begin{aligned} & (a+b)^{2}=a^{2}+2 a b+b^{2} \\ & (a-b)^{2}=a^{2}-2 a b+b^{2} \\ & (a+b)(a-b)=a^{2}-b^{2} ; \text { represent geometrically } \end{aligned}$
Understand and represent quadratic functions	
8.F.C. 7	Solve applied problems involving simple quadratic equations.
8.F.C.7a	Graph factorable quadratic functions, finding where the graph intersects the x -axis and the coordinates of the vertex; use words "parabola" and "roots"; include functions in vertex form and those with leading coefficient -1 ex. $y=x^{2}-36, y=(x-2)^{2}-9 ; y=-x^{2}, y=-(x-3)^{2}$.
Geometry	
Understand congruence and similarity using physical models, transparencies, or geometry software.	
8.G.A. 1	Verify experimentally the properties of rotations, reflections, and translations.
8.G.A.1a	Lines are taken to lines, and line segments to line segments of the same length.
8.G.A.1b	Angles are taken to angles of the same measure.

8.G.A.1c	Parallel lines are taken to parallel lines.
8.G.A. 2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
8.G.A. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
8.G.A. 4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
8.G.A. 5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
8.G.A. 6	Understand at least one proof of the Pythagorean Theorem; use the Pythagorean Theorem and its converse to solve applied problems including perimeter, area, and volume problem.
8.G.A. 7	Find the distance between two points on the coordinate plane using the distance formula; recognize that the distance formula is an application of the Pythagorean Theorem.
Statistics \& Probability	
Investigate patterns of association in bivariate data.	
8.SP.A. 1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
8.SP.A. 2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
8.SP.A. 3	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
8.SP.A. 4	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether

	or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
8.SP.A.5	Determine which measure of central tendency (mean, median, mode) best represents a data set (salaries, home prices, for answering certain questions); justify the choice made.
8.SP.A.6	Recognize practices of collecting and displaying data that may bias the presentation or analysis.
8.SP.A.7	Find and/or compare the theoretical probability, the experimental probability, and/or the relative frequency of a given event.
8.SP.A.8	Understand the difference between independent and dependent events, and recognize common misconceptions involving probability (Alice rolls a 6 on a die three times in a row: she is just as likely to roll a 6 on the fourth roll as she was on any previous roll).

