

	5.NBT.B. 6	- Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
	5.NBT.B. 7	- Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
	5.NBT.B. 8	- Multiply a multi-digit number by a three-digit number; recognize and be able to explain common computational errors such as not accounting for place value
	5.NBT.B. 9	- Solve applied problems involving multiplication and division of whole numbers.
	5.NBT.B. 10	- Divide fluently up to a four-digit number by a two-digit number
	5.NBT.B. 11	- Find the prime factorization of any composite numbers, express in exponential notation, and understand that every whole number greater than 1 is either prime or can be expressed as a product of primes
	5.NBT.B. 12	- Understand percentages as parts out of 100, use \% notation, and express a part of a whole as a percentage
	Express, Inte	pret and Use Ratios; Find Equivalences
	5.NBT.C. 13	- Convert fractions to decimals and decimals to fractions.
	5.NBT.C.13a	- Convert fractions and decimals to percentages
	5.NBT.C.13b	- Convert percentages to fractions and decimals
	5.NBT.C. 14	- Express ratios in several ways given applied situation (3 cups to 5 people); recognize and find equivalent ratios
	Numbers and	Operations-Fractions
	Use equivalen	t fractions as a strategy to add and subtract fractions.
	5.NF.A. 1	- Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=8 / 12+15 / 12=$ $23 / 12$. (In general, $a / b+c / d=(a d+b c) / b d$.)
	5.NF.A. 2	- Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$.
	Apply and extend previous understandings of multiplication and division.	
	5.NF.B. 3	- Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are

		shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie
	5.NF.B. 4	- Solve the equation $(a / b) \times(c / d)=a c / b d$.) For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$.
	5.NF.B.4b	- Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
	5.NF.B. 5	- Interpret multiplication as scaling (resizing), by:
	5.NF.B.5a	- Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
	5.NF.B.5b	- Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .
	5.NF.B. 6	- Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.
	5.NF.B. 7	- Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
	5.NF.B.7a	- Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$.
	5.NF.B.7b	- Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=$ 20 because $20 \times(1 / 5)=4$.
	5.NF.B.7c	- Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?
	Integers	
	Add and Su	ract Integers and Rational Numbers
	5.I.A. 1	- Understand integer subtraction as the inverse of integer addition.
	5.I.A. 2	- Add and subtract integers between -10 and 10.Use the number line and chip models for addition and subtraction
	5.I.A. 3	- Add, subtract, multiply, and divide positive rational numbers fluently
	Measurement and Data	

	Convert like measurement units within a given measurement system.	
	5.MD.A. 1	- Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
	Represent and interpret data.	
	5.MD.B. 2	- Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8)$. Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.
	Geometric measurement: understand concepts of volume.	
	5.MD.C. 3	- Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
	5.MD.C.3a	- A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.
	5.MD.C.3b	- A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.
	5.MD.C. 4	- Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft and other real world units.
	5.MD.C. 5	- Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
	5.MD.C.5a	- Find the volume of a rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
	5.MD.C.5b	- Apply the formulas $V=l \times w \times h$ and $V=b \times h$ for rectangular prisms to find volumes of rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.
	5.MD.C.5c	- Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.
	5.MD.C. 6	- Apply the formula for surface area of a rectangular prism. $2 \mathrm{ab}+2 \mathrm{bc}+2 \mathrm{ac}$
	Find Areas of Geometric Shapes Using Formulas	
	5.MD.D. 7	- Represent relationships between areas of rectangles, triangles, and parallelograms using models
	5.MD.D. 8	- Understand and know how to use the area formula of a triangle; $\mathrm{A}=1 / 2 \mathrm{bh}$, and represent using models and manipulatives
	5.MD.D. 9	- Understand and know how to use the area formula for a parallelogram: $\mathrm{A}=\mathrm{bh}$ and represent using models and manipulatives
	5.MD.D. 10	- Understand and know how to use the circumference and area formula of a circle
	Geometry	
	Graph points on the coordinate plane to solve real-world and mathematical problems.	
	5.G.A. 1	- Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its

| | | | coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second
 number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the
 coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate). |
| :--- | :--- | :--- | :--- | :--- |
| | | 5.G.A.2 | Represent real world and mathematical problems by graphing points in a quadrant of the coordinate plane, and interpret coordinate values
 of points in the context of the situation. |
| | | Classify two-dimensional figures into categories based on their properties. | |

