

	4.NBT.A.5 - Compose and decompose numbers using place value to 1,000,000; write numbers in expanded notation	
	Use place value understanding and properties of operations to perform multi-digit arithmetic.	
	4 NBT.B.	- Fluently add and subtract multi-digit whole numbers using the standard algorithm.
	$\mathbf{4}$ NBT.B. 7	- Multiply a whole number of up to four digits by a one-digit whole number,.
	4NBT. B.7a	- Multiply two two-digit numbers, using strategies based on place value and the properties of operations.
	$\begin{array}{\|l\|} \hline \text { 4NBT. } \\ \text { B.7b } \end{array}$	- Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models
	$\begin{aligned} & \hline \text { 4 NBT. } \\ & \text { B. } 8 \end{aligned}$	- Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division.
	$\begin{array}{\|l} \hline \text { 4.NBT. } \\ \text { B8a } \\ \hline \end{array}$	- Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
	$\begin{aligned} & \text { 4.NBT. } \\ & \text { B. } 9 \end{aligned}$	- Find all factors of any whole number through 50, list factor pairs, and determine if a one-digit number is a factor of a given whole number
	4.NBT. B. 10	- List the first 12 multiples of a given-one-digit whole number, determine if a whole number is a multiple of a given one-digit whole number
	$\begin{aligned} & \hline \text { 4.NBT. } \\ & \text { B. } 11 \end{aligned}$	- Know that some numbers have exactly two factors and are called prime numbers. All other numbers are called composite.
	$\begin{aligned} & \text { 4.NBT. } \\ & \text { B. } 12 \end{aligned}$	- Use factors and multiples to compose and decompose whole numbers
	$\begin{array}{\|l\|} \hline \text { 4.NBT. } \\ \text { B. } 13 \end{array}$	- Add and subtract basic whole numbers fluently(ex $2+2,8+7,4+9$)
	Numbers and Operations-Fractions	
	Extend understanding of fraction equivalence and ordering.	

	$\begin{aligned} & \hline \text { 4.NF. } \\ & \text { A. } 1 \end{aligned}$	- Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size.
	$\begin{aligned} & \text { 4.NF. } \\ & \text { A1a } \end{aligned}$	- Recognize and generate equivalent fractions.
	$\begin{aligned} & \text { 4.NF. } \\ & \hline \text { A. } 2 \end{aligned}$	- Compare two fractions with different numerators and different denominators, e.g., by creating common denominators (ex $1 / 4,3 / 4$) or numerators (ex.3/4, 3/5), or by comparing to a benchmark fraction such as $1 / 2$.
	$\begin{aligned} & \text { 4.NF. } \\ & \text { A.2a } \end{aligned}$	- Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>,=$, or <, and justify the conclusions, e.g., by using a visual fraction model, written explanation, or numerical comparison.
	Build fractions from unit fractions	
	$\begin{array}{\|l} \hline \text { 4.NF. } \\ \text { B. } 3 \\ \hline \end{array}$	- Understand a fraction a / b with $a>1$ as a sum of fractions $1 / b$ (Clarification below)
	$\begin{aligned} & \hline \text { 4.NF. } \\ & \text { B.3a } \end{aligned}$	- Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.
	$\begin{aligned} & \text { 4.NF. } \\ & \text { B.3b } \end{aligned}$	- Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1$ $+1 / 8=8 / 8+8 / 8+1 / 8$.
	$\begin{aligned} & \hline \text { 4.NF. } \\ & \text { B.3c } \end{aligned}$	- Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.
	$\begin{aligned} & \hline \text { 4.NF. } \\ & \text { B.3d } \end{aligned}$	- Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.
	$\begin{aligned} & \text { 4.NF. } \\ & \text { B. } 4 \end{aligned}$	- Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.
	$\begin{aligned} & \text { 4.NF. } \\ & \text { B.4a } \end{aligned}$	- Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.
	$\begin{aligned} & \hline \text { 4.NF. } \\ & \text { B.4b } \end{aligned}$	- Understand a multiple of a / b as a multiple of $1 / \mathrm{b}$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as $6 / 5$. (In general, $n \times(a / b)=(n \times a) / b$.)
	$\begin{aligned} & \text { 4.NF. } \\ & \text { B.4c } \end{aligned}$	- Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party,

		how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?
	Understand decimal notation for fractions, and compare decimal fractions	
	$\begin{aligned} & \text { 4.NF. } \\ & \text { C. } 5 \\ & \hline \end{aligned}$	- Express a fraction with denominator 10 as an equivalent fraction with denominator 100 , and use this technique to add two fractions with respective denominators 10 and $100 .{ }^{2}$ For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$.
	$\begin{aligned} & \hline \text { 4.NF. } \\ & \text { C. } 6 \\ & \hline \end{aligned}$	- Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as $62 / 100$; describe a length as 0.62 meters; locate 0.62 on a number line diagram.
	$\begin{aligned} & \hline \text { 4.NF. } \\ & \text { C. } 7 \\ & \hline \end{aligned}$	- Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.
	$\begin{array}{\|l} \hline \text { 4.NF. } \\ \text { C. } 8 \\ \hline \end{array}$	- Multiply and divide decimals up to two decimal places by a one-digit whole number where the result is a terminating decimal
	$\begin{aligned} & \hline \text { 4.NF. } \\ & \text { C. } 9 \end{aligned}$	- Add and subtract all decimal numbers
	Measurement and Data	
	Solve problems involving measurement and conversion of measurements.	
	$\begin{aligned} & \text { 4.MD. } \\ & \text { A. } 1 \end{aligned}$	- Know relative sizes of measurement units within one system of units including $\mathrm{km}, \mathrm{m}, \mathrm{cm} ; \mathrm{kg}, \mathrm{g} ; \mathrm{lb}, \mathrm{oz} . ; \mathrm{l}, \mathrm{ml} ; \mathrm{hr}$, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft rope as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...
	$\begin{aligned} & \text { 4.MD. } \\ & \text { A. } 2 \end{aligned}$	- Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
	$\begin{aligned} & \hline \text { 4.MD. } \\ & \text { A. } 3 \end{aligned}$	- Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.
	$\begin{aligned} & \text { 4.MD. } \\ & \text { A. } 4 \end{aligned}$	- Measure using common tools and select appropriate units of measure
	$\begin{array}{\|l\|} \hline \text { 4.MD. } \\ \text { A. } 5 \end{array}$	- Measure and compare integer temperatures in Fahrenheit degrees and Celsius
	$\begin{array}{\|l\|} \hline \text { 4.MD. } \\ \text { A. } 6 \end{array}$	- Measure surface area of cubes and rectangular prisms by covering and counting area of the faces

	$\begin{aligned} & \text { 4.MD. } \\ & \text { A. } \end{aligned}$	- Carry out the following conversions from one unit of measure to a larger or smaller unit of measure; meters to centimeters, hours to minutes
	Represent and interpret data.	
	$\begin{aligned} & \text { 4.MD. } \\ & \text { B. } 8 \end{aligned}$	- Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.
	Geometric measurement: understand concepts of angle and measure angles.	
	$\begin{aligned} & \hline \text { 4.MD. } \\ & \text { C. } 9 \end{aligned}$	- Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:
	$\begin{aligned} & \text { 4.MD. } \\ & \text { C.9a } \end{aligned}$	- An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles.
	$\begin{aligned} & \text { 4.MD. } \\ & \text { C.9b } \end{aligned}$	- An angle that turns through n one-degree angles is said to have an angle measure of n degrees.
	$\begin{aligned} & \text { 4.MD. } \\ & \text { C. } 10 \end{aligned}$	- Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.
	$\begin{aligned} & \text { 4.MD. } \\ & \text { C. } 11 \end{aligned}$	- Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.
	Geometry	
	Draw and identify lines and angles, and classify shapes by properties of their lines and angles.	
	$\begin{aligned} & \text { 4.G.A } \\ & \text {. } 1 \end{aligned}$	- Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures
	$\begin{aligned} & \text { 4.G.A } \\ & .2 \end{aligned}$	- Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.
	$\begin{aligned} & \text { 4.G.A } \\ & .3 \end{aligned}$	- Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
	$\begin{aligned} & \text { 4.G.A } \\ & \hline .4 \end{aligned}$	- Identify basic geometric shapes including isosceles, equilateral and right triangles and use their properties to solve problems

	$\begin{aligned} & \text { 4.G.A } \\ & .5 \end{aligned}$	- Identify and count the faces, edges and vertices of basic three-dimensional geometric solids including cubes, rectangular prisms, and pyramids; describe the shape of their faces
	$\begin{aligned} & \text { 4.G.A } \\ & .6 \end{aligned}$	- Recognize rigid motion transformations (flips, slides, turns) of a two-dimensional object
	$\begin{aligned} & \text { 4.G.A } \\ & .7 \end{aligned}$	- Identify the radius and diameter of a circle.
	Data and Probability	
	Represent and Solve Problems for Given Data	
	$\begin{aligned} & \hline \text { 4.DP. } \\ & \text { A. } 1 \end{aligned}$	- Construct tables and bar graphs from given data
	$\begin{aligned} & \text { 4.DP. } \\ & \text { A. } 2 \end{aligned}$	- Order a given set of data, find the median, mean, mode, and specify the range of values
	$\begin{aligned} & \text { 4.DP. } \\ & \text { A. } 3 \end{aligned}$	- Solve problems using data presented in tables and bar graphs (compare data represented in two bar graphs and read bar graphs showing two data sets)
	$\begin{aligned} & \hline \text { 4.DP. } \\ & \text { A. } 4 \end{aligned}$	- Predict the probability of the outcome in a simple event using visual models, ex. Find the probability of a given number when rolling a number cube.

